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We considered the problem of the transfer of a substance for a liquid to the ab- 
sorbent surface of a circular capillary. We conducted a general analysis. Us- 
ing the method of two-time formalism, we found the solution of the problem in 
one special case. 

In addition to technologies in which a substantial role is played by mass-transfer phe- 
nomena complicated by heat transfer [i, 2], industry also makes use of apparatuses in which 
mass transfer is carried out under quasiisothermal conditions without any phase transitions. 
These include devices for the extraction of various substances from porous materials, the 
dyeing of textile products made of natural and synthetic fibers, all sorts of bathing and 
soaking processes carried out for the purpose of imparting necessary properties to substances, 
and others. The course of these processes is determined in large measure by the capillary- 
porous structure of the material. This explains the interest in mass transfer in a single 
capillary. 

Suppose that into a liquid solution of concentration Co we introduce (at t = 0) a straight 
circular capillary (of length I and radius R, where l >> R), whose inner surface sorbs the 
substance dissolved in the liquid. It is clear that the diffusion-sorption phenomena will be 
preceded by the hydrodynamic ones: the formation of a capillary meniscus and of the velocity 
profile of Poisuille flow of the liquid under the influence of the capillary pressure and the 
pressure drop 5p. 

It is natural to expect that the characteristic time ~, of the establishment of a capil- 
lary meniscus (and the creation of a pressure drop leading to the motion of the liquid along 
the capillary) is independent of the viscosity and depends only on the surface-tension coef- 
ficient o, the density ~ of the medium, and the capillary diameter d. From an analysis of the 
dimensionality of T, = const P~/2o-I/2d=/2, we can take the constant factor equal to unity; 
then ~laop~o-1~d s~. In a similar manner, we can find T2 = const d2v -I . 

In monotonic relaxation processes the constant factor in the dimensional formulas is us- 
usally much less than unity. However, if we set it equal to unity (i.e., greatly exaggerate 
it), the time required for establishing the profile is nevertheless found to be extremely 
small, owing to the smallness of the capillary diameter: ~ood2v -I. 

In estimating the times T~ and T,, we start from the assumption that each of them is much 
longer than T, and T2. This condition enables us to consider the motion of the liquid at any 
instant of time to be Poiseuille motion. The time required for the solution to penetrate to 
a distance h into the capillary under the influence of capillary forces can obviously be ob- 
tained as the ratio of h to the average velocity of the motion: ~aovh<v> -i (the true velo- 

city v is determined from the equations of hydrodynamics, 0 ~ ap +~Avi, avi = 0 ). If 
Ox~ Oxi 

the pressure drop Ap is due to the action of capillary forces, it will be proportional to the 
ratio o/d. Thus, we find for ra that TaooN~o-ld-t 

The time T4 can be estimated in a manner similar to T3. However, here Ap should be de- 
termined by Bernoulli's formula Apoopv 2, %ooh~d-~p'iv -~. 

We reduce the results so obtained to a table and proceed to estimate them for the case of 
the motion of aqueous solutions, setting p = 10s kg/ma, ~ = i0-* N/m, ~ = i0 -6 ma/sec, the cap- 
illary diameter d = 10-" m, the height of the rise in the capillary h = 10-" m, and the velo- 
city of the flow going past is v = 1 m/sec. 
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Remark. I) times; II) calculation formula; III) order of mag- 
nitude of time, sec. 

From Table I it follows that if the capillary surface is well wetted by the solution, 
then the meniscus and the stationary motion of the liquid will be established practically in- 
stantaneously. But the time required to move the solution a distance of 0.001 m is of the 
order of i sec. If the walls are not wetted by the solution, then the time required to move 
the liquid the same distance along the capillary is i0 ~ times as long. Thus, the "capillary 
transport" of the dissolved substance to the surface (its delivery as a result of flow under 
the influence of capillary pressure) takes place many times faster than the hydrodynamic trans- 
port resulting from the pressure proportional to the square of the velocity. From this we can 
draw a conclusion of great importance for the organization of technological processes: we 
must make sure by some method or other that the surface of the material is wettable, but if 
it is impossible for some reason, we can bring about the delivery of the solution by the hy- 
drodynamic method if we create a pressure drop by considerably increasing the velocity of the 
liquid (dynamic head) or by vacuuming. 

Now let us consider diffusion-sorption phenomena. The following processes may be dis- 
tinguished: "transverse" diffusion of the dissolved substance from the surface to the depths 
of the material, "longitudinal" diffusion in the material along a capillary, and lastly, 
"longitudinal" diffusion in the solution along a capillary. The characteristic times for 
these processes [3] are equal, respectively, to T~~ ~eouh~O~, TT~h~O~q . As applied 
to the dyeing of textile materials, we can take [4]: ~ = 10 -7 m, D m = i0 -~4 m2/sec, Dliq = 
i0 -*~ m2/sec, h = 10 -3 m. The estimates obtained for the times are shown in Table i. It can 
be seen from the table that T6 >> ~7. This means that in organizing a technological process, 
we may disregard the phenomenon of diffusion along the material. 

Since the diffusion coefficient in solids is smaller by many orders of magnitude than 
the diffusion coefficient in liquids, it has conventionally been assumed that the limiting 
stage of the mass-exchange processes between a solid and a liquid is the transfer of mass in 
the solid. However, this is not always so, and there exist various possibilities, which are 
classified below. We begin by considering the case in which, owing to the smallness of the 
fiber diameters, the time for "capillary transport" of the dissolved particles, ~3, and the 
time for transverse diffusion, Ts, have the same order of magnitude: Ts cots. In this case, 
during an interval of time Ts the pores of the material are filled with the solution, and there 
are two possible situations: either the mass of the arriving substance arriving by "capillary 
transport" is sufficient to give the material the necessary properties (color, crease-resis- 
tance, fireproofness, purity, etc.) or this quantity is insufficient. 

In the first case the technology may be organized according to the following scheme: 
leaving the material in the solution for a short time (equal to ~a), making sure that the pores 
are filled with the liquid by the capillary method, and thereafter placing the material in an 
apparatus which accelerates the transverse diffusion in the material (time Ts). This may be 
called a capillary-diffusion technology, on the basis of the method by which the processes 
take place. 

In the second case the mass of dissolved substance entering the pores of the material 
through capillary absorption is insufficient to give the material the necessary properties. 
This means that the material must be kept in the solution longer, for a period of time great- 
ly exceeding T3. The necessary residence time of the porous solid in the solution depends on 
the transport paths of the dissolved substance into the solution-filled material. We can or- 
ganize the delivery of the substance to the surface of the material by hydrodynamically forc- 
ing the solution through the pores of the material, with subsequent "transverse" diffusion 
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from the pores into the "skeleton" of the material. This scheme may be referred to as a hy- 
drodynamic-diffusion (liD) scheme. On the other hand, the dissolved substance may enter the 
material in a process of "longitudinal" diffusion of the liquid along the capillary, with 
subsequent "transverse" diffusion into the depths of the material. This scheme may be given 
the name of capillary-diffusion-diffusion scheme (CDD). 

It may happen, in turn, that the process of diffusion into the material by the CDD scheme 
takes place much faster than sorption by the surface but more slowly than the delivery of the 
dissolved substance by "longitudinal" diffusion along the capillary. We shall call this an 
adsorption-diffusion (AD) process. It is observed, for example, in the case when the require- 
ments imposed on the properties of the material are satisfied as soon as the dissolved sub- 
stance is localized on the surface of the material (in our model, on the capillary walls, with- 
out penetrating into the interior); in the case of slow adsorption (low chemical affinity be- 
tween the dissolved substance and the wall material); in the case when there is rapid adsorp- 
tion (high chemical affinity for the material) and the mass of the dissolved substance that 
enters the capillary in the capillary-hydrodynamic transport stage is insufficient for obtain- 
ing the necessary properties of the material after treatment, which makes it necessary to de- 
liver new batches of the substance into the capillary by "longitudinal" diffusion. 

For a mathematical description of the problem according to the AD scheme, we shall make 
use of the equation, reduced to dimensionless form, that describes the law of conversion of 
mass of the dissolved substance in a one-dimensional capillary [5]: 

a___~.~ = Dl__iq a26 an. (1) 

at 12 Oz ~. at 
t )  i s  o b t a i n e d  by  t h e  u s u a l  scheme o f  n o n e q u i l i b r i u m  t h e r m o d y n a m i c s :  The equation for n(z, 

an - -~ (n - -  =~). ( 2 )  

Ot 
Combining (2) with (l) and giving the initial and boundary conditions, we finally have 

O___~_~ = D liq a~6 On a__._~_n _ - -~  (n - -  =~), 

Ot l~ Oz~ Ot ' ~Ot ~ (3) 

z = O ,  z = h  6 = 1 ;  t = O :  6 = 1 ,  n = O .  

i n  t h e  p r o b l e m  (3) t h e r e  a r e  two c h a r a c t e r i s t i c  t i m e s :  t he  t i m e  o f  " l o n g i t u d i n a l "  d i f -  
f u s i o n  37 = l a / D l i . ,  d u r i n g  wh ich  a Brownian  p a r t i c l e  s u c e e d s  i n  d i f f u s i n g  a l o n g  t h e  c a p i l l a r y ,  
and t h e  c h a r a c t e r i s t i c  a d s o r p t i o n  t i m e ,  T.  = 1 / 7 .  L e t  us  c o n s i d e r  t h e  e a s e  o f  " r a p i d "  d i f f u -  
s i o n  (s ~ ~7/T, << i). It is clear that as a result of the "rapid" diffusion of the dissolved 
substance from the solution volume outside the capillary to the interior and along the capil- 
lary, the concentration inside the capillary during the process is kept constant and equal to 
the concentration in the volume outside the capillary, i.e., 8(z, t) = i. The problem for 
n(z, t) takes the form dn/dt =--y(n -- u), nlt= 0 = 0, from which it follows that 

n = = [1 - -  exp (--70].  (4) 

We shall give a formal argument to justify the result (4), using two-time formalism. To 
do this, we introduce two new (dimensionless) times: t, = t/T7 and t2 = t/Ts. Since in the 

"fast," and t2 is "slow." Rewriting 

On On 
~- s = - s ( n  - -  =~), 

Oh O& (5) 

case under consideration s E TT/T, << I, time t~ is 
the system (3) in the new time variables, we obtain 

06 --{-s 0 6  0~6 On s On 
Oh Ot~ Oz~ Oh Ot~ 

t1=t2=0: 6=I, n=0; z=0, z=l: 6=I. 

We shall try to find a solution of the system (5) in the form of an expansion in the 
parameter s, which in the case under consideration is small: 8 = 8a + sS, + s28a + �9 n = 
no + sn, + s2na + .... 

Substituting these expansions into (5), we obtain the following equations for the zeroth 
and first approximations: 

06____Z_o = O~6____t Ono , On---~ = O; 

Oh Oz~ Oh Oh 
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h=O:  [~o= I, n=O; z=O, z = l :  [~o=1; 
0[~, 0 ~  _~ On_____!_~ = 0~o Ono , 

Oh Oz~ Oh Ot~ Ot2 
(6) 

On__.L = Ono (no - -  afio). (7 )  
Oh OG 

the solution of the problem (6), no = no(re, z), [3o = i, into the second Substituting 
equation of the system (7), we find 

On~ One 
- (no -- ~). (8) 

oh ot~ 

Assuming that no = no(re, z), we find, after integrating Eq. (8), that 

na = - -  (no--O*) tl + A(G, e). (9 )  
C)t2 ' 

The two-time method requires that there be no secular terms. In accordance with this 
requirement, in (9) we must set the expression 3no/~t2 + (no -- ~) equal to zero. Thus: 

Ono + (no - -  ~ )  = O, n o [ . = o  = O, ( 1 0 )  
OG 

I n t e g r a t i n g  (10), we f i n a l l y  obta in  

n o  = ~ [1 - -  e x p  (--G)] = ~ [1 - -  exp ( - -W)I  

in complete agreement with the result (4) obtained from qualitative considerations. 

In a similar manner, using the scheme of two-time formalism, we can consider the case 
of slow diffusion (s E Tv/~8 >> i). However, in this case the expansion must be in the 
small parameter s -l. 

Thus, an analysis of the process of transfer of the dissolved substance from the volume 
of solution outside the capillary to the surface of the absorbing capillary enables us to 
make a classification of the technologies and, on the basis of that classification, to indi- 
cate the technical methods for realizing and intensifying them, as well as to obtain exact 
solutions in limiting cases. 

NOTATION 

Co, concentration of the dissolved substance in the solution outside the capillary; l, 
R, length and radius of the circular capillary; o, p, surface tension and density of the solu- 
tion; z~, time for establishment of the capillary meniscus; T2, time for establishment of the 
velocity profile; T3, T4, times for penetration of the liquid to a distance h into th~interior 
of the capillary under the influence of capillary and hydrodynamic forces, respectively; Ap, 
pressure drop; v, kinematic viscosity of the solution; ~, dynamic viscosity of the solution~ 
v, velocity of flow; Dliq, Dm, coefficients of diffusion of the dissolved substance in the 
liquid and the wall material; ~5, time for the diffusion of particles of the dissolved sub- 
stance from the surface into the interior of the material; T6, TT, times for the diffusion of 
particles of the dissolved substance along the capillary for the material and the liquid, re- 
spectively; z, dimensionless longitudinal coordinate; 8, dimensionless concentration of the 
solution (8 E C/Co); n, dimensionless concentration of the substance on the surface; n = 2aR -~ 
Co-X; a, surface concentration of the sorbed substance; t, time; ~ and y, constants. 
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